Rowe Aluminium Potassium Sulphate Dodecahydrate

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

- **Product name**: Rowe Aluminium Potassium Sulphate Dodecahydrate
- **Synonyms**: AK(SO4)2.12HOH
- **Proper shipping name**: Not Applicable
- **Chemical formula**: Not Applicable
- **Other means of identification**: Not Available

Relevant identified uses of the substance or mixture and uses advised against

- **Relevant identified uses**: Laboratory chemical.

Details of the supplier of the safety data sheet

- **Registered company name**: ROWE SCIENTIFIC
- **Address**: 11 Challenge Boulevard Wangara 6065 WA Australia
- **Telephone**: +61 8 9302 1911
- **Fax**: +61 8 9302 1905
- **Website**: Not Available
- **Email**: rowewa@rowe.com.au

Emergency telephone number

- **Emergency telephone numbers**: +61 8 9302 1911 (24 Hrs)

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

- **Poisons Schedule**: Not Available
- **GHS Classification**[^1]: Acute Aquatic Hazard Category 3

Label elements

- **GHS label elements**: Not Available

- **SIGNAL WORD**: NOT APPLICABLE

Hazard statement(s)

- **H402**: Harmful to aquatic life

Precautionary statement(s): Prevention

- **P273**: Avoid release to the environment.

Precautionary statement(s): Response

- **Not Applicable**

Precautionary statement(s): Storage

- **Not Applicable**

Precautionary statement(s): Disposal

Continued...
P501 Dispose of contents/container to authorised chemical landfill or if organic to high temperature incineration

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% (weight)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10043-67-1</td>
<td>100</td>
<td>aluminium potassium sulfate</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

Ingestion
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.
- Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur.
- Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive.
- Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml.
- Dextrose has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium.

[Ellenhorn and Barceloux: Medical Toxicology]

Poisoning should be treated with copious drinks of water and gastric lavage if vomiting has not occurred. Demulcent drinks should be given and shock alleviated if patient shows signs of collapse [Martindale]

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility
None known.

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard
- Non combustible.
- Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of:
 - sulfur oxides (SOx)
 - metal oxides
SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills

- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Wear impervious gloves and safety glasses.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Do NOT use air hoses for cleaning.
- Place spilled material in clean, dry, sealable, labelled container.

Major Spills

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Control personal contact with the substance, by using protective equipment and dust respirator.
- Prevent spillage from entering drains, sewers or water courses.
- Recover product wherever possible. Avoid generating dust.
- Sweep / shovel up.
- If required, wet with water to prevent dusting.
- Put residues in labelled plastic bags or other containers for disposal.
- Wash area down with large quantity of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling

- Limit all unnecessary personal contact.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this MSDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this MSDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- Glass container is suitable for laboratory quantities
- DO NOT use aluminium, galvanised or tin-plated containers
- DO NOT use unlined steel containers
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

- Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride.
- These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition.
- The state of subdivision may affect the results.
- In presence of moisture, the material is corrosive to aluminium, zinc and tin producing highly flammable hydrogen gas.

PACKAGE MATERIAL INCOMPATIBILITIES

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>aluminium potassium sulfate</td>
<td>Aluminium, soluble salts (as Al)</td>
<td>2 (mg/m3)</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>TEEL-0</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium potassium sulfate</td>
<td>35.2 / 19.1/ppm</td>
<td>105 / 57.4(ppm)</td>
<td>176 / 95.7(ppm)</td>
<td>500 / 100(ppm)</td>
</tr>
</tbody>
</table>
Exposure controls

Appropriate engineering controls
General exhaust is adequate under normal operating conditions.

Personal protection
- Safety glasses with side shields; or as required,
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lenses should be removed at the first signs of eye redness or irritation - lenses should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection

Skin protection
Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
- polychloroprene
- nitrile rubber
- butyl rubber
- fluoroplastic
- polyvinyl chloride
Gloves should be examined for wear and/or degradation constantly.

Hand protection
- Overalls
- P.V.C. apron
- Barrier cream
- Skin cleansing cream
- Eye wash unit

Body protection
See Other protection below

Other protection
- Overalls
- P.V.C. apron
- Barrier cream
- Skin cleansing cream
- Eye wash unit

Thermal hazards

Recommended material(s)

GLOVE SELECTION INDEX
Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index".
The effect(s) of the following substance(s) are taken into account in the computer-generated selection:
Rowe Aluminium Potassium Sulphate Dodecahydrate Not Available

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
</table>
| * CPI - Chemwatch Performance Index
A: Best Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion

NOTES: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -
* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Particulate. (AS/NZS 1716 & 1715, EN 143:000 & 149:001, ANSI Z88 or national equivalent)

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>Air-line*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td>100+ x ES</td>
<td>-</td>
<td>Air-line*</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Air-line**</td>
<td>PAPR-P3</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow
A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>White, odourless crystals having a sweetish astringent taste. Soluble in water forming acid solution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical state</td>
<td>Divided Solid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Continued...
Section 10 Stability and Reactivity

Reactivity
- See section 7

Chemical stability
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions
- See section 7

Conditions to avoid
- See section 7

Incompatible materials
- See section 7

Hazardous decomposition products
- See section 5

Section 11 Toxicological Information

Information on toxicological effects

<table>
<thead>
<tr>
<th>Route of exposure</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled</td>
<td>Generated dust may be disconcerting. Dust inhalation may cause nose, throat and mucous membrane irritation and coughing and chest discomfort.</td>
</tr>
<tr>
<td>Ingestion</td>
<td>Sulfate salts are poorly absorbed from the gastro-intestinal tract but because of osmotic activity are able to draw water from the lumen to produce diarrhoea (purging). Sulfate ion usually has little toxicological potential. Large doses may be corrosive, gum necrosis and gastrointestinal haemorrhage have occurred.</td>
</tr>
<tr>
<td>Skin Contact</td>
<td>Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.</td>
</tr>
<tr>
<td>Eye</td>
<td>Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis), temporary impairment of vision and/or transient eye damage/dysfunction may occur.</td>
</tr>
<tr>
<td>Chronic</td>
<td>Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.</td>
</tr>
</tbody>
</table>

Rowe Aluminium Potassium Sulphate Dodecahydrate

<table>
<thead>
<tr>
<th>Chemical Parameter</th>
<th>Toxicity</th>
<th>Irritation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>92</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>64.5(loses H2O)</td>
<td>Molecular weight (g/mol) 474.39</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
<td>Oxidising properties Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Applicable</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Applicable</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Applicable</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

aluminium potassium sulfate

<table>
<thead>
<tr>
<th>Chemical Parameter</th>
<th>Toxicity</th>
<th>Irritation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>92</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>64.5(loses H2O)</td>
<td>Molecular weight (g/mol) 474.39</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
<td>Oxidising properties Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Applicable</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Applicable</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Applicable</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

ALUMINIUM POTASSIUM SULFATE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytyc inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus...
production.
No significant acute toxicological data identified in literature search.
Reproductive effector in rats.

<table>
<thead>
<tr>
<th>Acute Toxicity</th>
<th>Carcinogenicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skin Irritation/Corrosion</th>
<th>Reproductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serious Eye Damage/Irritation</th>
<th>STOT - Single Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respiratory or Skin sensitisation</th>
<th>STOT - Repeated Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mutagenicity</th>
<th>Aspiration Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

CMR STATUS

SECTION 12 ECOLOGICAL INFORMATION

Toxicity
Harmful to aquatic organisms.
DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

aluminium potassium sulfate(7784-24-9) is found on the following regulatory lists

- "OECD List of High Production Volume (HPV) Chemicals"
- "Australia Inventory of Chemical Substances (AICS)"
- "Sigma-Aldrich Transport Information"
- "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix B (Part 3)"
- "International Numbering System for Food Additives"
- "WHO Guidelines for Drinking-water Quality - Chemicals for which guideline values have not been established"
- "Australia - Australian Capital Territory - Environment Protection Regulation: Ambient environmental standards (STOCK - inorganic chemicals)"
- "Australia Drinking Water Guideline values for physical and chemical characteristics"
- "Australia - Australian Capital Territory - Environment Protection Regulation: Ambient environmental standards (Domestic water supply - inorganic chemicals)"
- "Australia - Australian Capital Territory - Environment Protection Regulation: Pollutants entering waterways taken to cause environmental harm (STOCK)"
- "Australia - Australian Capital Territory - Environment Protection Regulation: Pollutants entering waterways taken to cause environmental harm (Domestic water supply quality)"
- "Australia Exposure Standards"
- "Australia Hazardous Substances Information System - Consolidated Lists"

SECTION 16 OTHER INFORMATION

Other information
Classification of the preparation and its individual components has been drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using...
A list of reference resources used to assist the committee may be found at:
www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.